

30 April 2025

Drilling confirms zones of near surface higher-grade lithium mineralisation at Pinheiro and Reservatório

Savannah Resources plc, the developer of the Barroso Lithium Project (the 'Project') in Portugal, a 'Strategic Project' under the European Critical Raw Materials Act and Europe's largest spodumene lithium deposit, is pleased to announce the second batch of assay results from Phase 2 of its Definitive Feasibility Study ('DFS') drilling programme at the Project. The 117-hole, c.13,000m programme is being undertaken for further JORC Resource definition, geotechnical and metallurgical purposes.

Highlights:

- The Phase 2 drill programme for the DFS is well underway, targeting the Pinheiro, Reservatório and Grandão deposits.
- To date, 75 holes have been drilled for c. 8,300m in the planned 117 hole/c.13,000m programme.
- New significant lithium assays have been received from a further 22 holes (5 at Pinheiro, 12 at Reservatório and 5 at Grandão). Assays from 42 holes have now been received to date overall.
- The initial stage of the Phase 2 drilling is nearing completion and the results from this will feed into upgrading the confidence level of the JORC Resource estimates for each deposit.
- At **Pinheiro**, broad zones of near surface, higher grade lithium mineralisation are now being intersected on a regular basis. Better intersections include:
 - o 20.76m @ 1.48% Li₂O from 44.62m in hole 25PNRDD011, including 9m @ 1.87% Li₂O
 - 31.04m @ 1.46% Li₂O from 65.96m in hole 25PNRDD013, including 14m @ 1.73% Li₂O and 12m @ 1.39% Li₂O
- At **Reservatório**, the latest assays are indicating zones of higher-grade mineralisation, including some near surface. Better intersections include:
 - 27m @ 1.25% Li₂O from 100m in hole 25RESRC050, including 2m @ 2.02% Li₂O, 8.9m @ 1.33% Li₂O and 10m @ 1.4% Li₂O
 - $_{\odot}$ 22m @ 1.56% Li_2O from 25m in hole 25RESRC064, including 9m @ 2.00% Li_2O, 3m @ 1.68% Li_2O and 2m @ 1.42% Li_2O

- 22m @ 1.51% Li₂O from 64m in hole 25RESRC058, including 10m @ 2.00% Li₂O and 6m @ 2.89% Li₂O
- 22m @ 1.35% Li₂O from 65m in hole 25RESRC060, including 6m @ 1.68% Li₂O and 3m @ 1.72% Li₂O
- Recent results from Grandão confirm that mineralisation continues along strike and down dip with better intersections including:
 - o 13m @ 1.14% Li₂O from 3m in hole 25GRARC140, including 4m @ 1.62% Li₂O

Savannah's Technical Director, Dale Ferguson said, "We have made good progress to date with our field programme as we move towards the conclusion of the Phase 2 DFS drilling. We are particularly encouraged by the continued higher-grade zones of lithium mineralisation we are now consistently encountering at the Pinheiro deposit. We plan to mine Pinheiro very early in Project's development, so any increase in the average grade and size of this orebody could have a positive impact on operating costs and cash flow generation in the Project's first years, and therefore the Project's overall economics.

"This second batch of drilling results has also highlighted zones of higher-grade mineralisation at Reservatório with one being intersected only 25m down hole. The drilling is continuing to build our confidence in the grades and tonnages of the existing JORC Resource estimates and the results are pointing towards the continued expansion of the resources both along strike and down dip.

"This Project continues to reveal strong signs of its greater resource potential which, aside from affirming our early assumptions, confirms why this project is of increasingly strategic importance to Europe. The team and I look forward to reporting further results over the coming months as we move towards the production of new JORC Resource estimates for these orebodies as part of the Project's DFS. Busy and exciting times lie ahead for Savannah."

Further Information

As previously announced, Savannah started Phase 2 of the DFS-related drilling programme at the Barroso Lithium Project in January 2025 (see Figure 1). The programme consists of drilling for resource, metallurgical and geotechnical purposes using primarily Reverse Circulation ('RC') rigs with some supplementary diamond drilling. To date, **8,302m** of drilling has been completed of the c.13,000m initially planned for Phase 2. The programme is ongoing, and updates will be provided as further results are received.

Figure 1. Barroso Lithium Project summary map showing deposits and drill hole locations.

Pinheiro

The current JORC Resource estimate for the Pinheiro deposit (all Inferred as at May 2024) is 2.0Mt at 1.0% Li₂O.

The drilling at Pinheiro is building on the Phase 1 DFS programme completed last year, and is continuing to focus on infilling the previous drill programme carried out in 2018. Recent results show that the **Eastern Pegmatite** continues to carry ore grade lithium mineralisation at depth, with the thickness of the pegmatite generally increasing, although there is some variability along strike. The drilling has focussed on the northern and central section of the pegmatite, which has shown some variability in the orientation in terms of the trend direction and direction of dip, providing a challenge for targeting of the drilling. However, the latest drilling has shown that the Eastern Pegmatite extends to the northeast, with further drilling being considered dependant on results. A drill hole designed for geotechnical purposes (25PNRDD011) contained a significant intersection of pegmatite which returned 20.76m at 1.48% Li₂O from 44.62m.

Two holes were completed on the southern extent of the **Western Pegmatite** with one hole down dip of the previously reported 25PNRRC030, which intersected high grade lithium mineralisation across the width of the pegmatite (24m at 1.17% Li₂O from 11m and 28m at 1.21% Li₂O from 38m). The diamond drill hole 25PNRDD013 drilled about 50m down dip of 25PNRRC030 continued with high grades over the width of the pegmatite intercept (33.04m at 1.46% Li₂O), highlighting the increased potential at depth. The Western Pegmatite also remains open along strike to the south.

Significant recent lithium mineralisation intersections at **Pinheiro** include:

- \circ ~~ 20.76m @ 1.48% Li_2O from 44.62m in hole 25PNRDD011, including 9m @ 1.87% Li_2O ~
- 31.04m @ 1.46% Li₂O from 65.96m in hole 25PNRDD013, including 14m @ 1.73% Li₂O and 12m @ 1.39% Li₂O

Figure 2. Location of Phase 2 diamond drilling at Pinheiro with significant intercepts to date.

Figure 3. Cross section 1 Eastern Pegmatite of Pinheiro deposit (Section A-A').

Figure 4. Cross section 2 Western Pegmatite of Pinheiro deposit (Section B-B').

Reservatório

The current JORC Resource estimate for the Reservatório deposit (Indicated & Inferred as at May 2024) is 4.2Mt at 0.9% Li₂O.

Drilling at Reservatório continues to test the down dip and eastern extremities of the pegmatite and continues to demonstrate the extension of the lithium mineralisation beyond the designed mining parameters. Numerous lithium intercepts were returned above the current average for the orebody of 0.9% Li₂O. While the drilling has shown that there is possibly some structural disruption to the pegmatite including several broken zones within the pegmatite indicating possible faulting offsetting the structure and some natural variability to the geometry of the pegmatite, there is suggestion that the pegmatite continues beyond the present planned programme.

Significant mineralised intersections at **Reservatório** include:

- 30.15m @ 1.15% Li₂O from 129.85m in hole 25RESRC049, including 3m @ 1.46% Li₂O, 6.2m @ 1.79% Li₂O and 5m @ 1.58% Li₂O
- 27m @ 1.25% Li₂O from 100m in hole 25RESRC050, including 2m @ 2.02% Li₂O, 8.9m @ 1.33% Li₂O and 10m @ 1.4% Li₂O

- $_{\odot}$ 22m @ 1.56% Li_2O from 25m in hole 25RESRC064, including 9m @ 2% Li_2O, 3m @ 1.68% Li_2O and 2m @ 1.42% Li_2O
- $_{\odot}$ 22m @ 1.51% Li_2O from 64m in hole 25RESRC058, including 10m @ 2.00% Li_2O and 6m @ 2.89% Li_2O
- $_{\odot}$ 22m @ 1.35% Li_2O from 65m in hole 25RESRC060, including 6m @ 1.68% Li_2O and 3m @ 1.72% Li_2O
- o 18.06m @ 0.82% Li₂O from 136.94m in hole 25RESRC048, including 3m @ 1.29% Li₂O
- $\circ~~$ 13m @ 1.11% Li_2O from 105m in hole 25RESRC065, including 2m @ 1.66% Li_2O
- \circ ~ 13m @ 1.01% Li_2O from 159m in hole 25RESRC048, including 5.2m @ 1.30% Li_2O ~

The drilling operations at **Reservatório** are ongoing (Figures 5 and 6).

Figure 5. Location of Phase 2 diamond drilling at Reservatório with significant intercepts.

Figure 6. Cross section of Reservatório deposit (Section A - A').

Grandão

The current JORC Resource estimate for the Grandão deposit (Measured, Indicated & Inferred as at May 2024) is 17.7Mt at 1.04% Li₂O.

The drilling at Grandão has continued to focus primarily on the southern extremities of the pegmatite and where it occurs nearer to the surface and will be part of the preliminary mining stages. The drilling has shown that the southern edge is thinner than the central part of the pegmatite with widths varying between 3m to 20m.

The bulk of the Grandão resource has already been classified in the Indicated or Measured category and this round of drilling is giving more confidence to the southern and northern extents of the pegmatite to aid in mine design.

Significant mineralised intersections at Grandão include:

- $\circ~~$ 13m @ 1.14% Li_2O from 3m in hole 25GRARC140, including 4m @ 1.62% Li_2O
- \circ ~ 19m @ 0.64% Li_2O from 15m in hole 25GRARC141, including 6m @ 1.56% Li_2O
- $_{\odot}$ ~ 12m @ 0.99% Li_{2}O from 47m in hole 25GRARC141, including 4m @ 1.45% Li_{2}O $_{\odot}$

Figure 9. Location of Phase 2 drilling at Grandão with significant intercepts from assays results.

Next steps

The initial stage of the Phase 2 drilling is nearing completion and the results from this will feed into upgrading the confidence level of the JORC Resource estimates for each deposit.

In conjunction with resource drilling, preparation of the specific requirements of core samples for metallurgical testing has commenced. Once results have been received the specific sample requirements requested by Savannah's metallurgical consultants will be sorted and sent for testing.

The drilling of diamond drill holes for geotechnical testing is complete at Pinheiro and is currently being carried out at Grandão before being undertaken at Reservatório. The results from this programme will be used to aid in the design of the various mining pits to ensure maximum extraction of ore under safe and stable conditions.

Competent Person and Regulatory Information

The information in this announcement that relates to exploration results is based upon information compiled by Mr Dale Ferguson, Technical Director of Savannah Resources Limited. Mr Ferguson is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the

"Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Ferguson consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Regulatory Information

This Announcement contains inside information for the purposes of the UK version of the market abuse regulation (EU No. 596/2014) as it forms part of United Kingdom domestic law by virtue of the European Union (Withdrawal) Act 2018 ("UK MAR").

Savannah – Enabling Europe's energy transition.

ENDS

Follow @ SavannahRes on X (Formerly known as Twitter) Follow Savannah Resources on LinkedIn

For further information please visit <u>www.savannahresources</u>.com or contact:

Savannah Resources PLC	Tel: +44 20 7117 2489
Emanuel Proença, CEO	
SP Angel Corporate Finance LLP (Nominated Advisor & Broker)	Tel: +44 20 3470 0470
David Hignell/ Charlie Bouverat (Corporate Finance)	
Grant Barker/Abigail Wayne (Sales & Broking)	
Canaccord Genuity Limited (Joint Broker)	Tel: +44 20 7523 8000
James Asensio / Charlie Hammond (Corporate Broking)	
Ben Knott (Sales)	
Camarco (UK Financial PR)	Tel: +44 20 3757 4980
Gordon Poole/ Emily Hall / Nuthara Bandara	
Portugal Media Relations	
Antonio Neves Costa, Communications Manager	Tel: +351 962 678 912

About Savannah

Savannah Resources is a mineral resource development company and the sole owner of the Barroso Lithium Project (the 'Project') in northern Portugal. The Project is the largest battery grade spodumene lithium resource outlined to date in Europe and was classified as a 'Strategic Project' by the European Commission under the Critical Raw Materials Act in March 2025.

Through the Project, Savannah will help Portugal to play an important role in providing a long-term, locally sourced, lithium raw material supply for Europe's lithium battery value chain. Once in operation the Project will produce enough lithium (contained in c.190,000tpa of spodumene concentrate) for approximately half a million vehicle battery packs per year and hence make a significant contribution towards the European Commission's Critical Raw Material Act goal of a minimum 10% of European endogenous lithium production from 2030.

Savannah is focused on the responsible development and operation of the Barroso Lithium Project so that its impact on the environment is minimised and the socio-economic benefits that it can bring to all its stakeholders are maximised.

The Company is listed and regulated on the London Stock Exchange's Alternative Investment Market (AIM) and trades under the ticker "SAV".

	<u>assays)</u>							
Hole ID	Prospect	Hole Type	Tot Depth (m)	Easting	Northing	RL	Dip	Azimuth
25GRADD048	Grandão	DD	128.25	601650	4607783	567	-50	190
25GRADD049	Grandão	DD	120.7	601516	4607909	507	-50	230
25GRARC134	Grandão	RC	30	601928	4607805	578	-90	0
25GRARC135	Grandão	RC	50	601889	4607672	587	-90	0
25GRARC136	Grandão	RC	40	601884	4607651	595	-90	0
25GRARC137	Grandão	RC	80	601772	4607635	606	-90	0
25GRARC138	Grandão	RC	80	601776	4607634	606	-60	90
25GRARC139	Grandão	RC	84	601803	4607696	577	-90	0
25GRARC140	Grandão	RCDD	28.6	601817	4607719	562	-90	0
25GRARC141	Grandão	RC	90	601787	4607763	551	-72	90
25GRARC142	Grandão	RCDD	49	601734	4607675	596	-60	90
25GRARC143	Grandão	RCDD	50	601732	4607675	597	-90	0
25GRARC144	Grandão	RC	170	601730	4607716	582	-70	90
25GRARC145	Grandão	RC	142	601729	4607716	582	-90	0
25GRARC146	Grandão	RCDD	122.25	601634	4608025	504	-60	120
25GRARC147	Grandão	RC	141	601742	4608055	539	-65	45
25PNRDD009	Pinheiro	DD	84.85	601594	4606830	580	-60	270
25PNRDD010	Pinheiro	DD	110.35	601590	4606831	584	-57	215
25PNRDD011	Pinheiro	DD	120.75	601583	4606909	575	-50	263
25PNRDD012	Pinheiro	DD	101.2	601579	4606910	575	-50	63
25PNRDD013	Pinheiro	DD	124.9	601399	4606803	538	-60	90
25PNRDD014	Pinheiro	DD	111.8	601414	4606856	561	-50	185
25PNRDD015	Pinheiro	DD	126.8	601598	4607011	583	-50	310
25PNRDD016	Pinheiro	DD	108.3	601399	4606802	538	-50	110
25PNRDD017	Pinheiro	DD	100.1	601599	4607011	583	-62	310
25PNRDD018	Pinheiro	DD	179.55	601637	4606994	572	-55	230
25PNRRC026	Pinheiro	RCDD	120	601607	4606920	573	-70	270
25PNRRC027	Pinheiro	RC	100	601578	4606879	581	-90	0
25PNRRC028	Pinheiro	RCDD	94.3	601577	4606879	581	-80	270
25PNRRC029	Pinheiro	RC	70	601575	4606878	581	-60	270
25PNRRC030	Pinheiro	RC	70	601430	4606800	554	-60	90
25PNRRC031	Pinheiro	RCDD	128.55	601599	4607010	583	-60	245
25PNRRC032	Pinheiro	RC	100	601639	4607036	584	-60	270
25PNRRC033	Pinheiro	RCDD	131.5	601636	4606995	573	-60	270
25PNRRC034	Pinheiro	RC	85	601664	4607061	591	-60	270
25PNRRC035	Pinheiro	RC	110	601589	4606977	572	-60	270
25RESRC046	Reservatório	RCDD	184.8	599583	4609279	639	-80	150
25RESRC047	Reservatório	RCDD	178.7	599585	4609275	639	-65	150
25RESRC048	Reservatório	RCDD	186.5	599498	4609187	641	-90	0
25RESRC049	Reservatório	RCDD	174	599500	4609184	641	-70	150
25RESRC050	Reservatório	RCDD	140.1	599520	4609147	631	-63	150
25RESRC051	Reservatório	RCDD	160.4	599618	4609287	620	-80	150

APPENDIX 1: Drill hole locations of Completed Phase 2 RC and Diamond Resource Holes (* with

Hole ID	Prospect	Hole Type	Tot Depth (m)	Easting	Northing	RL	Dip	Azimuth
25RESRC052	Reservatório	RCDD	158.8	599620	4609285	619	-70	150
25RESRC053	Reservatório	RC	111	599695	4609242	613	-90	0
25RESRC054	Reservatório	RCDD	150.4	599656	4609309	604	-90	0
25RESRC055	Reservatório	RCDD	105	599657	4609306	604	-70	150
25RESRC056	Reservatório	RCDD	88	599913	4609253	577	-80	0
25RESRC057	Reservatório	RC	88	599915	4609247	577	-60	140
25RESRC058	Reservatório	RCDD	96	599710	4609302	593	-80	150
25RESRC059	Reservatório	RC	100	599950	4609211	586	-60	150
25RESRC060	Reservatório	RC	147	599712	4609299	593	-60	150
25RESRC061	Reservatório	RC	120	599783	4609267	588	-70	310
25RESRC062	Reservatório	RC	120	599784	4609266	588	-90	0
25RESRC063	Reservatório	RC	67	599934	4609230	581	-60	150
25RESRC064	Reservatório	RC	55	599970	4609238	575	-60	150
25RESRC065	Reservatório	RC	140	599503	4609102	617	-60	150
25RESRC066	Reservatório	RC	70	599970	4609241	575	-80	0
25RESRC067	Reservatório	RCDD	160.8	599481	4609136	628	-65	150
25RESRC068	Reservatório	RC	94	599968	4609241	575	-60	340
25RESRC069	Reservatório	RC	91	599901	4609215	594	-60	150
25RESRC070	Reservatório	RC	100	599888	4609236	589	-60	150
25RESRC071	Reservatório	RCDD	143	599480	4609138	628	-75	150
25RESRC072	Reservatório	RC	85	599889	4609238	589	-90	0
25RESRC073	Reservatório	RCDD	177.25	599479	4609139	628	-85	150
25RESRC074	Reservatório	RC	90	599586	4609050	607	-60	150
25RESRC075	Reservatório	RCDD	85	599863	4609275	579	-70	150
25RESRC076	Reservatório	RC	100	599568	4609080	614	-60	150
25RESRC077	Reservatório	RC	105	599566	4609082	614	-80	150
25RESRC078	Reservatório	RCDD	91	599863	4609276	579	-90	0
25RESRC079	Reservatório	RC	121	599733	4609259	603	-60	150
25RESRC080	Reservatório	RC	122	599800	4609219	606	-60	150
25RESRC081	Reservatório	RC	133	599799	4609221	606	-90	0
25RESRC082	Reservatório	RC	147	599801	4609224	606	-70	330
25RESRC083	Reservatório	RC	107	599852	4609221	600	-60	150
25RESRC084	Reservatório	RC	111	599852	4609222	600	-90	0
25GRADD048	Grandão	DD	128.25	601650	4607783	567	-50	190
25GRADD049	Grandão	DD	120.7	601516	4607909	507	-50	230
25GRARC134	Grandão	RC	30	601928	4607805	578	-90	0
25GRARC135	Grandão	RC	50	601889	4607672	587	-90	0
25GRARC136	Grandão	RC	40	601884	4607651	595	-90	0
25GRARC137	Grandão	RC	80	601772	4607635	606	-90	0
25GRARC138	Grandão	RC	80	601776	4607634	606	-60	90
25GRARC139	Grandão	RC	84	601803	4607696	577	-90	0
25GRARC140	Grandão	RCDD	28.6	601817	4607719	562	-90	0
25GRARC141	Grandão	RC	90	601787	4607763	551	-72	90
25GRARC142	Grandão	RCDD	49	601734	4607675	596	-60	90

Hole ID	Prospect	Hole Type	Tot Depth (m)	Easting	Northing	RL	Dip	Azimuth
25GRARC143	Grandão	RCDD	50	601732	4607675	597	-90	0
25GRARC144	Grandão	RC	170	601730	4607716	582	-70	90
25GRARC145	Grandão	RC	142	601729	4607716	582	-90	0
25GRARC146	Grandão	RCDD	122.25	601634	4608025	504	-60	120
25GRARC147	Grandão	RC	141	601742	4608055	539	-65	45
25PNRDD009	Pinheiro	DD	84.85	601594	4606830	580	-60	270
25PNRDD010	Pinheiro	DD	110.35	601590	4606831	584	-57	215
25PNRDD011	Pinheiro	DD	120.75	601583	4606909	575	-50	263
25PNRDD012	Pinheiro	DD	101.2	601579	4606910	575	-50	63
25PNRDD013	Pinheiro	DD	124.9	601399	4606803	538	-60	90
25PNRDD014	Pinheiro	DD	111.8	601414	4606856	561	-50	185
25PNRDD015	Pinheiro	DD	126.8	601598	4607011	583	-50	310
25PNRDD016	Pinheiro	DD	108.3	601399	4606802	538	-50	110
25PNRDD017	Pinheiro	DD	100.1	601599	4607011	583	-62	310
25PNRDD018	Pinheiro	DD	179.55	601637	4606994	572	-55	230
25PNRRC026	Pinheiro	RCDD	120	601607	4606920	573	-70	270
25PNRRC027	Pinheiro	RC	100	601578	4606879	581	-90	0
25PNRRC028	Pinheiro	RCDD	94.3	601577	4606879	581	-80	270
25PNRRC029	Pinheiro	RC	70	601575	4606878	581	-60	270
25PNRRC030	Pinheiro	RC	70	601430	4606800	554	-60	90
25PNRRC031	Pinheiro	RCDD	128.55	601599	4607010	583	-60	245
25PNRRC032	Pinheiro	RC	100	601639	4607036	584	-60	270
25PNRRC033	Pinheiro	RCDD	131.5	601636	4606995	573	-60	270
25PNRRC034	Pinheiro	RC	85	601664	4607061	591	-60	270
25PNRRC035	Pinheiro	RC	110	601589	4606977	572	-60	270
25RESRC046	Reservatório	RCDD	184.8	599583	4609279	639	-80	150
25RESRC047	Reservatório	RCDD	178.7	599585	4609275	639	-65	150
25RESRC048	Reservatório	RCDD	186.5	599498	4609187	641	-90	0
25RESRC049	Reservatório	RCDD	174	599500	4609184	641	-70	150
25RESRC050	Reservatório	RCDD	140.1	599520	4609147	631	-63	150
25RESRC051	Reservatório	RCDD	160.4	599618	4609287	620	-80	150
25RESRC052	Reservatório	RCDD	158.8	599620	4609285	619	-70	150
25RESRC053	Reservatório	RC	111	599695	4609242	613	-90	0
25RESRC054	Reservatório	RCDD	150.4	599656	4609309	604	-90	0
25RESRC055	Reservatório	RCDD	105	599657	4609306	604	-70	150
25RESRC056	Reservatório	RCDD	88	599913	4609253	577	-80	0
25RESRC057	Reservatório	RC	88	599915	4609247	577	-60	140
25RESRC058	Reservatório	RCDD	96	599710	4609302	593	-80	150
25RESRC059	Reservatório	RC	100	599950	4609211	586	-60	150
25RESRC060	Reservatório	RC	147	599712	4609299	593	-60	150
25RESRC061	Reservatório	RC	120	599783	4609267	588	-70	310
25RESRC062	Reservatório	RC	120	599784	4609266	588	-90	0
25RESRC063	Reservatório	RC	67	599934	4609230	581	-60	150
Hole ID	Prospect	Hole Type	Tot Depth (m)	Easting	Northing	RL	Dip	Azimuth

25RESRC064	Reservatório	RC	55	599970	4609238	575	-60	150
25RESRC065	Reservatório	RC	140	599503	4609102	617	-60	150
25RESRC066	Reservatório	RC	70	599970	4609241	575	-80	0
25RESRC067	Reservatório	RCDD	160.8	599481	4609136	628	-65	150
25RESRC068	Reservatório	RC	94	599968	4609241	575	-60	340
25RESRC069	Reservatório	RC	91	599901	4609215	594	-60	150
25RESRC070	Reservatório	RC	100	599888	4609236	589	-60	150
25RESRC071	Reservatório	RCDD	143	599480	4609138	628	-75	150
25RESRC072	Reservatório	RC	85	599889	4609238	589	-90	0
25RESRC073	Reservatório	RCDD	177.25	599479	4609139	628	-85	150
25RESRC074	Reservatório	RC	90	599586	4609050	607	-60	150
25RESRC075	Reservatório	RCDD	85	599863	4609275	579	-70	150
25RESRC076	Reservatório	RC	100	599568	4609080	614	-60	150
25RESRC077	Reservatório	RC	105	599566	4609082	614	-80	150
25RESRC078	Reservatório	RCDD	91	599863	4609276	579	-90	0
25RESRC079	Reservatório	RC	121	599733	4609259	603	-60	150
25RESRC080	Reservatório	RC	122	599800	4609219	606	-60	150
25RESRC081	Reservatório	RC	133	599799	4609221	606	-90	0
25RESRC082	Reservatório	RC	147	599801	4609224	606	-70	330
25RESRC083	Reservatório	RC	107	599852	4609221	600	-60	150
25RESRC084	Reservatório	RC	111	599852	4609222	600	-90	0

		<u></u>		r	r	
Hole ID	Prospect	From	То	Width	Li20	
25GRARC137	Grandão	50	53	3	1.42	
25GRARC138	Grandão	No significant results				
25GRARC139	Grandão	10	13	3	0.7	
and	Grandão	19	26	7	0.82	
and	Grandão	55	57	2	1.51	
and	Grandão	61	64	3	1.04	
25GRARC140	Grandão	3	16	13	1.14	
25GRARC141	Grandão	15	23	8	1.27	
and	Grandão	31	34	3	0.62	
and	Grandão	47	59	12	0.99	
and	Grandão	68	71	3	0.87	
25PNRDD011	Pinheiro	32	34	2	1.29	
and	Pinheiro	40	42	2	1.19	
and	Pinheiro	44.62	65.38	20.76	1.48	
25PNRDD013	Pinheiro	65.96	97	31.04	1.46	
25PNRRC031	Pinheiro	8	10	2	1.2	
and	Pinheiro	16	20	4	1.64	
and	Pinheiro	91	97.8	6.8	1.19	
25PNRRC032	Pinheiro	7	18	11	0.98	
25RESRC047**	Reservatório	169.27	172	2.73	1.06	
25RESRC048	Reservatório	136.94	155	18.06	0.82	
and	Reservatório	159	172	13	1.01	
25RESRC049	Reservatório	129.85	160	30.15	1.15	
25RESRC050	Reservatório	100	127	27	1.25	
25RESRC051	Reservatório	111	120.36	9.36	0.81	
and	Reservatório	127	129	2	0.97	
and	Reservatório	134	139	5	0.82	
and	Reservatório	148	153	5	0.91	
25RESRC055	Reservatório		Waiting for	diamond tail		
25RESRC056*	Reservatório	77	84	7	0.98	
25RESRC057	Reservatório		No signific	ant results	1	
25RESRC058*	Reservatório	64	86	22	1.51	
25RESRC059	Reservatório	20	25	5	1.25	
25RESRC060	Reservatório	65	87	22	1.35	
and	Reservatório	91	94	3	0.68	
and	Reservatório	102	104	2	0.97	
and	Reservatório	110	118	8	0.89	
25RESRC064	Reservatório	25	47	22	1.56	
25RESRC065	Reservatório	105	118	13	1.11	
and	Reservatório	122	128	6	1.08	

APPENDIX 2 - Summary of Significant Intercepts from the diamond drilling using a 0.5% Li₂O Cutoff.

*Significant results from RC hole, diamond tail to follow ** From completed diamond tail

APPENDIX 3 – JORC 2012 Table 1 - DFS Infill Drilling

JORC Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling	• Nature and quality of sampling (e.g. cut channels,	• The majority of previous holes were reverse
Criteria Sampling techniques	 JORC Code Explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Commentary The majority of previous holes were reverse circulation, sampled at 1m intervals. RC samples were collected in large plastic bags attached to the cyclone. On completion of the 1m run the large sample was passed through a 3-stage riffle splitter to collect a 2.5-4kg sub sample, to be used for assay. Diamond holes were completed for metallurgical sampling, geotechnical analysis and resource estimation. Core was PQ/HQ size, sampled at 1m intervals in the pegmatite, with boundaries sampled to geological boundaries. Half core samples were collected for analysis. Drilling was carried out to infill previous drilling to achieve a nominal 40m by 40m spacing with selected infill to 40m by 20m spacings, or as twins of previous RC drilling to get known samples for metallurgical testing. Geotechnical drilling was designed purely to intersect planned pit walls and pegmatite intersections were incidental, but followed all standard logging and sampling in line with all the drilling. Collar surveys are carried using differential DGPS with an accuracy to within 0.2m. A down hole survey for each hole was completed using gyro equipment. The lithium mineralisation is predominantly in the form of Spodumene-bearing pegmatites, the pegmatites are unzoned and vary in thickness from 5m-109m.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic,	 RC drilling used a 120mm diameter face sampling hammer.
	etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Core drilling was carried out using PQ/HQ single tube core barrels.
Drill sample	• Method of recording and assessing core and chip	RC drilling sample weights were monitored to ansure samples were maximized. Samples
recovery	sample recoveries and results assessed.	were carefully loaded into a splitter and split in
	and ensure representative nature of the samples.	the same manner ensuring that the sample
	• Whether a relationship exists between sample	in the range of 4-6kg.
	recovery and grade and whether sample bias may	Core recovery was measured and was found to
	have occurred due to preferential loss/gain of	 be generally excellent. No obvious relationships between sample
	fine/coarse material.	recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 RC holes were logged in the field at the time of sampling. Core was logged in detail for a variety of physical characteristics in a logging yard away from the drilling Each 1m sample interval was carefully homogenised and assessed for lithology, not sample interval was been been been been been been been bee
	 wnetner logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 colour, grainsize, structure and mineralisation. Core was sampled to geological boundaries and at 1m intervals therein. A representative chip sample produced from RC drilling was washed and taken for each 1m sample and stored in a chip tray which was photographed.

Criteria	JORC Code Explanation	Commentary
		 Percussion holes were logged for every metre drilled with the spoil collected for each metre by shovel and placed in a sample bag, a representative sub sample was taken and logged for lithology, colour, grainsize and mineralisation. Core was photographed.
Sub-sampling	• If core, whether cut or sawn and whether quarter,	 1m RC samples were split by the riffle splitter
techniques and	half or all core taken.	at the drill rig and sampled dry.
sample	• If non-core, whether riffled, tube sampled, rotary	 Core was cut in half using a diamond saw with 1m half core camples submitted for analysis or
preparation	split, etc and whether sampled wet or dry.	for metallurgical samples one of the halves was
	• For all sample types, the nature, quality and	cut again for a quarter core and sent for
	appropriateness of the sample preparation technique	 The sampling was conducted using industry
	 Quality control procedures adopted for all sub- 	standard techniques and were considered
	sampling stages to maximise representivity of	appropriate.
	samples.	of the sub-sampling and were found to be
	• Measures taken to ensure that the sampling is	satisfactory.
	representative of the in-situ material collected,	 Every effort was made to ensure that the samples were representative and not biased in
	duplicate/second-half samplina.	any way.
	• Whether sample sizes are appropriate to the	
	grain size of the material being sampled.	
Quality of	• The nature, quality and appropriateness of the	 Samples were received, sorted, labelled, and drived
assay data and	assaying and laboratory procedures used and	 Samples were crushed to 70% less than 2mm,
tests	total.	riffle split off 250g, pulverise split to better
	• For geophysical tools, spectrometers, handheld	than 85% passing 75 microns and 5g was split of for assaving.
	XRF instruments, etc, the parameters used in	• The samples were analysed using ALS
	determining the analysis including instrument	Laboratories ME-MS89L Super Trace method
	make and model, reading times, calibrations	ICP-MS instrumentation utilising
	 Nature of quality control procedures adopted 	collision/reaction cell technologies to provide
	(e.g. standards, blanks, duplicates, external	 A prepared sample (0.2g) is added to sodium
	laboratory checks) and whether acceptable levels	peroxide flux, mixed well and then fused in at
	of accuracy (i.e. lack of bias) and precision have	670°C. The resulting melt is cooled and then
	been established.	solution is then analysed by ICP-MS and the
		results are corrected for spectral inter-element
		 The final solution is then analysed by ICP-MS,
		with results corrected for spectral inter-
		 Standards/blanks and duplicates were inserted
		on a 1:20 ratio for both to samples taken.
		 Duplicate sample regime is used to monitor sampling methodology and homogeneity.
		• Routine QA/QC controls for the method ME-
		MS89L include blanks, certified reference standards of Lithium and duplicate samples
		Samples are assayed within runs or batches up
		to 150 samples. At the fusion stage that quality
		samples, so all samples follow the same
		procedure until the end. Fused and diluted
		samples are prepared for ICP-MS analysis. ICP
		certified standards solutions and interference
		corrections to achieve strict calibration fitting

Criteria	JORC Code Explanation	Commentary
		 parameters. Each 40-sample run is assayed with two blanks, two certified standards and one duplicate sample and results are evaluated accordingly. A QA/QC review of all information indicated that all assays were satisfactory.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All information was internally audited by company personnel. During this programme no holes were twinned. Savannah's experienced project geologists supervised all processes. All field data is entered into a custom log sheet and then into excel spreadsheets (supported by look-up tables) at site and subsequently validated as it is imported into the centralised Access database. Hard copies of logs, survey and sampling data are stored in the local office and electronic data is stored on the company's cloud drive. Results were reported as Li (ppm) and were converted to a percentage by dividing by 10,000 and then to Li₂0% by multiplying by
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 2.153. The coordinate of each drill hole was taken at the time of collecting using a handheld GPS with an accuracy of 5m. All collars were subsequently surveyed using DGPS with an accuracy of 0.2m. The grid system used is WSG84 Zone29N. An accurate, aerial topographic survey was obtained with accuracy of +/- 0.5m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was carried out on an infill basis to attain on a nominal 40m by 40m and based on geological targets with selected infill to 40m by 20m. Drill data is considered of sufficient spacing to define Measured and Indicated Mineral Resource in accordance with requirements for a DFS Compositing to 1m will be applied prior to resource estimation
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was generally carried out using angled holes, as close to perpendicular to strike as possible. All Geotech holes were drilled in various orientations to intersect planned pit walls. According to the expert (GGC - Consultants) requirements.
Sample security	• The measures taken to ensure sample security.	Samples were delivered to a courier and chain of custody is managed by Savannah.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Internal company auditing based on previous programmes is carried out and an external review will be carried out by the resource consultant to assure that all data collection and QA/QC procedures were conducted to industry standards.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 All work was completed inside the Mina do Barroso project C-100. Savannah has received written confirmation from the DGEG that under article 24 of Decree- Law no. 88/90 of March 16 being relevant justification based on the resources allocated exploited and intended, Savannah has been approved an expansion up to 250m of C100 mining concession in specific areas where a resource has been defined and the requirement for the expansion can be justified. The entire Phase 2 includes a total of 117 drill holes. The surface access was granted by an administrative easement right defined in the C- 100 mining contract, 95 of the drill holes were included in a first easement process, and the remaining 22 were subject to second easement that is still in progress.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Limited exploration work has been carried out by previous operators. No historic information has been included in the Mineral Resource estimates.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The lithium mineralisation is predominantly in the form of Spodumene-bearing pegmatites which are hosted in meta-pelitic and mica schists, and occasionally carbonate schists of upper Ordovician to lower Devonian age. The pegmatites vary in thickness from 5m-109m. The pegmatites occur within the license area as discrete bodies and currently four pegmatite bodies have a resource defined on them. The pegmatites vary in orientation from large shallow dipping bodies, such as the north – south striking Grandão and the east – west trending Reservatório to steeply dipping dyke like bodies seen at NOA and Pinheiro.
Drill hole information	 A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A table containing all drill holes drilled and a list of significant assays from the results received is included with the release. No material data has been excluded from the release. .
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such 	 Length weighted average grades have been reported. No high-grade cuts have been applied to reported grades. Metal equivalent values are not being reported; however, Li is reported as ppm and converted to the oxide Li₂O for resource purposes. The conversion factor used is to divide the Li value by

JORC Table 1 Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
	 aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	10,000 and multiplying by 2.153 to represent the value as a percentage.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• The majority of holes have been drilled at angles to intersect the mineralisation in perpendicular relation to the pegmatite
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A relevant plan showing the drilling is included within this release.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All relevant results available have been previously reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological mapping and rock chip sampling has been conducted over the project area.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The present drill programme has been designed to infill previous drilling to attain a measured or indicated class for an upcoming resource estimation. Further work is being planned as part of a second phase of resource infill drilling. Economic evaluation of the defined Mineral Resources, will be completed after the second phase of drilling.